博客
关于我
Python_matplotlib库绘制02(柱状图,饼状图)
阅读量:732 次
发布时间:2019-03-21

本文共 3464 字,大约阅读时间需要 11 分钟。

Matplotlib 绘图技巧:从柱状图到饼状图

Matplotlib 是一个强大的绘图库,支持多种类型的图表绘制,包括柱状图、饼状图、条形图等。在本文中,我们将逐步学习如何使用 Matplotlib 进行数据可视化。


柱状图

1. 简单柱状图

柱状图是最常用的数据可视化工具之一。下面是一个简单的柱状图示例:

import matplotlib.pyplot as pltnum_list = [1, 5, 6.5, 8, 11]plt.bar(range(len(num_list)), num_list)plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.show()

2. 改变柱状图颜色

为了更直观地展示数据,可以通过设置颜色来区分不同柱状图:

import matplotlib.pyplot as pltnum_list = [1, 5, 6.5, 8, 11]plt.bar(range(len(num_list)), num_list, color='rgbcy')plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.show()

3. 设置柱状图标签

为柱状图添加标签,使图表更加用户友好:

import matplotlib.pyplot as pltnum_list = [1, 5, 6.5, 8, 11]name_list = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']plt.bar(range(len(num_list)), num_list, color='rgbcy', tick_label=name_list)plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.show()

4. 堆叠柱状图

当需要同时比较多个数据系列时,可以使用堆叠柱状图:

import matplotlib.pyplot as pltnum_list = [1, 5, 6, 8, 11]num_list2 = [2, 3, 5, 1, 4]name_list = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']plt.bar(range(len(num_list)), num_list, color='b', tick_label=name_list, label='男')plt.bar(range(len(num_list)), num_list2, color='g', tick_label=name_list, label='女', bottom=num_list)plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.legend(loc='best')plt.show()

5. 横向条形图

如果想在水平方向展示数据,可以使用横向条形图:

import matplotlib.pyplot as pltnum_list = [1, 5, 6, 8, 11]num_list2 = [2, 3, 5, 1, 4]name_list = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']plt.barh(range(len(num_list)), num_list, color='b', tick_label=name_list, label='男')plt.barh(range(len(num_list)), num_list2, color='g', tick_label=name_list, label='女', left(num_list))plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.legend(loc='best')plt.show()

并列柱状图

1. 数据准备

为了制作并列柱状图,可以将每个柱子水平拉宽:

import matplotlib.pyplot as pltnum_list = [1, 5, 6.5, 8, 11]num_list2 = [2, 3, 5, 1, 4]name_list = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']x = list(range(len(num_list)))total_width = 0.8n = 2  #柱子数量width = total_width / n

2. 绘制并列柱状图

plt.bar(x, num_list, label='男', width=width)for i in range(len(x)):    x[i] = x[i] + widthplt.bar(x, num_list2, tick_label=name_list, label='女', width=width)plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.legend(loc='best')plt.show()

饼状图

1. 简单饼状图

饼状图适合展示不同部分所占的比例。以下是一个简单的饼状图示例:

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文sizes = [10, 30, 20, 40]labels = ['A', 'B', 'C', 'D']plt.pie(sizes, labels=labels)plt.title("饼状图")plt.legend(loc='best')plt.show()

2. 饼状图到中心距离

要使饼状图的某一部分距离中心,可以设置 explode 参数:

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']sizes = [10, 30, 20, 40]labels = ['A', 'B', 'C', 'D']explode = (0, 0.1, 0.2, 0.1)plt.pie(sizes, labels=labels, explode=explode)plt.title("饼状图")plt.legend(loc='best')plt.show()

3. 设置饼状图颜色

你可以通过 colors 参数为饼状图添加颜色:

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']sizes = [10, 30, 20, 40]labels = ['A', 'B', 'C', 'D']colors = ['r', 'g', 'y', 'b']plt.pie(sizes, labels=labels, colors=colors)plt.title("饼状图")plt.legend(loc='best')plt.show()

4. 显示百分比

如果需要显示百分比,可以使用 autopct 参数:

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']sizes = [10, 30, 20, 40]labels = ['A', 'B', 'C', 'D']colors = ['r', 'g', 'y', 'b']plt.pie(sizes, labels=labels, colors=colors, autopct='%1.2f%%')plt.title("饼状图")plt.legend(loc='best')plt.show()

以上就是从简单柱状图到饼状图的 Matplotlib 绘图技巧总结。如果你有任何问题或需要进一步的帮助,欢迎在评论区留言!

转载地址:http://mzagz.baihongyu.com/

你可能感兴趣的文章
NIFI大数据进阶_NIFI的模板和组的使用-介绍和实际操作_创建组_嵌套组_模板创建下载_导入---大数据之Nifi工作笔记0022
查看>>
NIFI大数据进阶_NIFI监控功能实际操作_Summary查看系统和处理器运行情况_viewDataProvenance查看_---大数据之Nifi工作笔记0026
查看>>
NIFI大数据进阶_NIFI监控的强大功能介绍_处理器面板_进程组面板_summary监控_data_provenance事件源---大数据之Nifi工作笔记0025
查看>>
NIFI大数据进阶_NIFI集群知识点_认识NIFI集群以及集群的组成部分---大数据之Nifi工作笔记0014
查看>>
NIFI大数据进阶_NIFI集群知识点_集群的断开_重连_退役_卸载_总结---大数据之Nifi工作笔记0018
查看>>
NIFI大数据进阶_内嵌ZK模式集群1_搭建过程说明---大数据之Nifi工作笔记0015
查看>>
NIFI大数据进阶_外部ZK模式集群1_实际操作搭建NIFI外部ZK模式集群---大数据之Nifi工作笔记0017
查看>>
NIFI大数据进阶_实时同步MySql的数据到Hive中去_可增量同步_实时监控MySql数据库变化_操作方法说明_01---大数据之Nifi工作笔记0033
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_01_实际操作---大数据之Nifi工作笔记0029
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_02_实际操作_splitjson处理器_puthdfs处理器_querydatabasetable处理器---大数据之Nifi工作笔记0030
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_说明操作步骤---大数据之Nifi工作笔记0028
查看>>
NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
查看>>
NIFI数据库同步_多表_特定表同时同步_实际操作_MySqlToMysql_可推广到其他数据库_Postgresql_Hbase_SqlServer等----大数据之Nifi工作笔记0053
查看>>
NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南001---大数据之Nifi工作笔记0068
查看>>
NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南002---大数据之Nifi工作笔记0069
查看>>
NIFI集群_内存溢出_CPU占用100%修复_GC overhead limit exceeded_NIFI: out of memory error ---大数据之Nifi工作笔记0017
查看>>
NIFI集群_队列Queue中数据无法清空_清除队列数据报错_无法删除queue_解决_集群中机器交替重启删除---大数据之Nifi工作笔记0061
查看>>
NIH发布包含10600张CT图像数据库 为AI算法测试铺路
查看>>
Nim教程【十二】
查看>>
Nim游戏
查看>>